Total Synthesis of Clavulanic Acid Analogues *via* Isomerisation of 7-Oxo-4-oxa-1-azabicyclo[3.2.0]hept-2-enes

By PETER H. BENTLEY,* GERALD BROOKS, MARTIN L. GILPIN, and ERIC HUNT (Beecham Pharmaceuticals Research Division, Brockham Park, Betchworth, Surrey RH3 7AJ)

Summary Sodium Z-3-benzylidene-7-oxo-4-oxa-1-azabicyclo[3.2.0]heptane-2-carboxylate (1b), a novel clavulanic acid analogue, has been prepared via the isomerisation of the bicycloheptene (2a). As part of a programme concerned with the total synthesis of clavulanic acid analogues,¹ we have prepared and studied the isomerisation of the novel bicycloheptenes (2). The latter were readily obtained from the acetate (3),² by a route previously demonstrated³ in these laboratories for the

synthesis of (2, $\mathbb{R}^1 = \mathbb{R}^2 = \mathbb{H}$) carrying a triphenylmethylamino group at C-6.† The intermediate β -keto esters (4a-d), which are largely enolised as shown, were isolated as oils in yields of 67-83%. Following chlorinolysis³ of (4a-d) the crude chlorides (5a-d) were each cyclised by adding 1 equiv. of triethylamine to an ice-cold ethereal solution and filtering the mixture after 10-15 min. Evaporation furnished the essentially pure, racemic bicycloheptenes (2a-d), in near quantitative yield. Further purification by rapid silica-gel chromatography led to a poor recovery of these sensitive materials. The observed spectral characteristics[†] confirmed the proposed structures for (**2a**--**d**); e.g. (**2a**) showed *inter alia* ν_{max} (CHCl₃): 1805 (lactam C=O), 1700 (ester C=O), and 1625 (C=C) cm⁻¹; λ_{max} (EtOH): 273 nm; δ 3.98 (q, J 14 Hz, CH₂Ph) and 5.77 (dd, J 2.5, J' 0.5 Hz, 5-H).

Exposure of (2a) to a further quantity (0.3-1 equiv.) of triethylamine in CH₂Cl₂ for 2-3 h, followed by chromatography, furnished only the racemic analogue (1a) in 54% yield from (4a). A similar yield of (1a) was also obtained, without isolation of (2a), by treating (5a) with K₂CO₃ in dry dimethylformamide. Compound (1a) displayed inter alia vmax (CHCl₃): 1800 (lactam C=O), 1750 (ester C=O), and 1680 (C=C) cm⁻¹; λ_{max} (EtOH) 265 nm; δ 5.20 (br,s, exchanges with D₂O containing DBN, 3-H), 5.57 (br, s, vinyl-H), and 5.86 (d, J 2.2 Hz, 5-H).[†] Whilst the product was expected to have the same relative stereochemistry at C-3 and C-5 as in clavulanic acid by virtue of its formation under basic conditions,⁴ the configuration of the doublebond could only be guessed.⁵ The observed shift of the vinyl proton in the n.m.r. spectrum, however, agrees well with that predicted for (1a), $\delta = 5.8$, if the coefficients of Matter et al.⁶ are applied to the bicycloheptane (1, $R^1 =$ Me, $R^2 = CO_2 Me)^7$ of established configuration.

All attempts to isomerise (2b-d) under similar basic or other conditions have failed. Interestingly, a compound isolated from (2c) or (5c) after treatment with K_2CO_3 followed by aqueous work up was identified as a mixture of the diastereoisomeric γ -lactams (6) from spectroscopic data. Finally, keeping a dilute aqueous tetrahydrofuran solution of (1a) at pH 9.5 with NaOH until 1 equiv. had been consumed provided, after freeze-drying, the amorphous sodium salt (1b) in 83% yield. Compound (1b) is a potent inhibitor of several β -lactamases.

We acknowledge the skilled assistance of Mr. P. D. Berry.

(Received, 15th August 1977; Com. 848.)

 \dagger The numbering, shown in (1), follows that used in penicillins, rather than that based on the bicycloheptane system. Chemical shifts are p.p.m. from Me₄Si for solutions in CDCl₃. DBN is 1,5-diazabicyclo[4.3.0]non-5-ene.

[‡] Satisfactory analytical and spectroscopic data were obtained for all new compounds.

¹ (a) Clavulanic acid, a naturally occurring β -lactamase inhibitor, has the structure (1c). See T. T. Howarth, A. G. Brown, and T. J. King, *J.C.S. Chem. Comm.*, 1976, 266; (b) A total synthesis of (\pm) -clavulanic acid has been reported by us. See P. H. Bentley, P. D. Berry, G. Brooks, M. L. Gilpin, E. Hunt, and I. I. Zomaya, *J.C.S. Chem. Comm.*, 1977, 748.

² Prepared from (\pm) -4-methylthioazetidin-2-one (K. Clauss, D. Grimm, and G. Prossel, Annalen, 1974, 539) by alkylation (ref. 3) with methylbromoacetate.

³ A. J. Eglington, J.C.S. Chem. Comm., 1977, 720. Lithium NN-bis(trimethylsilyl) amide was used for generation of the ester enolate; CCl_4 was the solvent for the chlorinolysis. The cyclisation conditions also differ (see text).

⁴ Recently a synthetic 3-epi analogue was shown to epimerise at C-3 under basic conditions: P. H. Bentley, unpublished results.

⁵ The structure of a related analogue (I, $R^1 = Me$, $R^2 = 2,5$ -dichloro-3-thienyl), prepared by us in an identical fashion has been confirmed by X-ray crystallographic analysis to have the relative stereochemistry depicted in (I): T. J. King, unpublished data. ⁶ U. E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon, and S. Sternhell, *Tetrahedron*, 1969, 25, 691. For limitations of this

⁶ U. E. Matter, C. Pascual, E. Pretsch, A. Pross, W. Simon, and S. Sternnell, *Tetranearon*, 1969, 25, 691. For initiations of this approach: *ibid.*, p. 2023.

^{\dagger} See ref. (1b), addition of [Z gem (Ph)-Z gem (CO₂R)] to the observed chemical shift for the vinyl proton of this compound (5.2) gives 5.78. On the same basis the predicted value for the E-isomer of (1a) is 6.18.